Resource management and scalability of the XCSF learning classifier system

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalization in the XCSF Classifier System: Analysis, Improvement, and Extension

We analyze generalization in XCSF and introduce three improvements. We begin by showing that the types of generalizations evolved by XCSF can be influenced by the input range. To explain these results we present a theoretical analysis of the convergence of classifier weights in XCSF which highlights a broader issue. In XCSF, because of the mathematical properties of the Widrow-Hoff update, the ...

متن کامل

Controlling a Four Degree of Freedom Arm in 3D Using the XCSF Learning Classifier System

This paper shows for the first time that a Learning Classifier System, namely XCSF, can learn to control a realistic arm model with four degrees of freedom in a three-dimensional workspace. XCSF learns a locally linear approximation of the Jacobian of the arm kinematics, that is, it learns linear predictions of hand location changes given joint angle changes, where the predictions are condition...

متن کامل

Discrete and fuzzy dynamical genetic programming in the XCSF learning classifier system

A number of representation schemes have been presented for use within Learning Classifier Systems, ranging from binary encodings to neural networks. This paper presents results from an investigation into using discrete and fuzzy dynamical system representations within the XCSF Learning Classifier System. In particular, asynchronous Random Boolean Networks are used to represent the traditional c...

متن کامل

Analysis and Improvements of the Classifier Error Estimate in XCSF

The estimation of the classifier error plays a key role in accuracy-based learning classifier systems. In this paper we study the current definition of the classifier error in XCSF and discuss the limitations of the algorithm that is currently used to compute the classifier error estimate from online experience. Subsequently, we introduce a new definition for the classifier error and apply the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Theoretical Computer Science

سال: 2012

ISSN: 0304-3975

DOI: 10.1016/j.tcs.2010.07.007